Thinking Clearly About Correlations and Causation: Graphical Causal Models for Observational Data – Julia M. Rohrer, 2018

Achen, C. H. (2005). Let’s put garbage-can regressions and garbage-can probits where they belong. Conflict Management and Peace Science, 22, 327339.
Google Scholar[1] | SAGE Journals | ISI[2][3]

Angrist, J. D., Pischke, J. S. (2010). The credibility revolution in empirical economics: How better research design is taking the con out of econometrics. The Journal of Economic Perspectives, 24(2), 330.
Google Scholar[4] | Crossref | ISI[5][6]

Asendorpf, J. B. (2012). Bias due to controlling a collider: A potentially important issue for personality research. European Journal of Personality, 26, 391392.
Google Scholar[7]

Baron, R. M., Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 11731182.
Google Scholar[8] | Crossref | Medline | ISI[9][10][11]

Borsboom, D., Mellenbergh, G. J., van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110, 203219.
Google Scholar[12] | Crossref | Medline | ISI[13][14][15]

Borsboom, D., van der Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., . . . Cramer, A. O. J. (2012). What kind of causal modelling approach does personality research need? European Journal of Personality, 26, 392393.
Google Scholar[16]

Bullock, J. G., Green, D. P., Ha, S. E. (2010). Yes, but what’s the mechanism? (don’t expect an easy answer). Journal of Personality and Social Psychology, 98, 550558.
Google Scholar[17] | Crossref | Medline | ISI[18][19][20]

Cartwright, N. (2007). Are RCTs the gold standard? BioSocieties, 2, 1120.
Google Scholar[21] | Crossref[22]

Cook, T. D., Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues for field settings. Boston, MA: Houghton Mifflin.
Google Scholar[23]

Ding, P., Miratrix, L. W. (2015). To adjust or not to adjust? Sensitivity analysis of M-Bias and butterfly-bias. Journal of Causal Inference, 3, 4157.
Google Scholar[24] | Crossref[25]

Duncan, G. J., Engel, M., Claessens, A., Dowsett, C. J. (2014). Replication and robustness in developmental research. Developmental Psychology, 50, 24172425.
Google Scholar[26] | Crossref | Medline | ISI[27][28][29]

Dunning, T. (2012). Natural experiments in the social sciences: A design-based approach. Cambridge, England: Cambridge University Press.
Google Scholar[30] | Crossref[31]

Elwert, F. (2013). Graphical causal models. In Morgan, S. L. (Ed.), Handbook of causal analysis for social research (pp. 245273). Dordrecht, The Netherlands: Springer.
Google Scholar[32] | Crossref[33]

Elwert, F., Winship, C. (2014). Endogenous selection bias: The problem of conditioning on a collider variable. Annual Review of Sociology, 40, 3153.
Google Scholar[34] | Crossref | Medline | ISI[35][36][37]

Greenland, S. (2003). Quantifying biases in causal models: Classical confounding vs. collider-stratification bias. Epidemiology, 14, 300306.
Google Scholar[38] | Crossref | Medline | ISI[39][40][41]

Hayduk, L., Cummings, G., Stratkotter, R., Nimmo, M., Grygoryev, K., Dosman, D., . . . Boadu, K. (2003). Pearl’s d-separation: One more step into causal thinking. Structural Equation Modeling, 10, 289311.
Google Scholar[42] | Crossref | ISI[43][44]

Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical me-diation analysis in the new millennium. Communication Monographs, 76, 408420.
Google Scholar[45] | Crossref | ISI[46][47]

Jackson, J. J., Thoemmes, F., Jonkmann, K., Lüdtke, O., Trautwein, U. (2012). Military training and personality trait development: Does the military make the man, or does the man make the military? Psychological Science, 23, 270277.
Google Scholar[48] | SAGE Journals | ISI[49][50]

King, G., Nielsen, R. (2016). Why propensity scores should not be used for matching. Retrieved from https://gking.harvard.edu/publications/why-propensity-scores-should-not-be-used-formatching
Google Scholar[52]

[51] Lee, J. J. (2012). Correlation and causation in the study of personality. European Journal of Personality, 26, 372390.
Google Scholar[53] | SAGE Journals | ISI[54][55]

Mohan, K., Pearl, J., Tian, J. (2013). Graphical models for inference with missing data. In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. Q. (Eds.), Advances in Neural Information Processing Systems 26 (NIPS 2013) (pp. 12771285). Red Hook, NY: Curran Associates.
Google Scholar[56]

Morgan, S. L., Winship, C. (2015). Counterfactuals and causal inference: Methods and principles for social research (2nd ed.). New York, NY: Cambridge University Press.
Google Scholar[57]

Mukherjee, S. (2010). The emperor of all maladies: A biography of cancer. New York, NY: Simon & Schuster.
Google Scholar[58]

Munafò, M. R., Tilling, K., Taylor, A. E., Evans, D. M., Smith, G. D. (2017). Collider scope: When selection bias can substantially influence observed associations. bioRxiv. doi:10.1101/079707
Google Scholar[60] | Crossref[61]

[59] Pearl, J. (1993). Graphical models, causality and intervention. Statistical Science, 8, 266269.
Google Scholar[62] | Crossref[63]

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82, 669688.
Google Scholar[64] | Crossref | ISI[65][66]

Pearl, J., Glymour, M., Jewell, N. P. (2016). Causal inference in statistics: A primer. Chichester, England: John Wiley & Sons.
Google Scholar[67]

Piff, P. K., Kraus, M. W., Côté, S., Cheng, B. H., Keltner, D. (2010). Having less, giving more: The influence of social class on prosocial behavior. Journal of Personality and Social Psychology, 99, 771784.
Google Scholar[68] | Crossref | Medline | ISI[69][70][71]

Robins, J. M., Wasserman, L. (1999). On the impossibility of inferring causation from association without background knowledge. In Cooper, G. F., Glymour, C. (Eds.), Computation, Causation, & Discovery (pp. 305321). Cambridge, MA: MIT Press.
Google Scholar[72]

Rohrer, J. (2017a, March 14). That one weird third variable problem nobody ever mentions: Conditioning on a collider [Web log post]. Retrieved from http://www.the100.ci/2017/03/14/that-one-weird-third-variable-problem-nobody-ever-mentions-conditioning-on-a-collider/
Google Scholar[74]

[73] Rohrer, J. (2017b, April 21). What’s an age-effect net of all time-varying covariates? [Web log post]. Retrieved from http://www.the100.ci/2017/04/21/whats-an-age-effect-net-of-all-time-varying-covariates/
Google Scholar[76]

[75] Rosenbaum, P. R. (1984). The consequences of adjustment for a concomitant variable that has been affected by the treatment. Journal of the Royal Statistical Society: Series A, 147, 656666.
Google Scholar[77] | Crossref | ISI[78][79]

Rozin, P. (2001). Social psychology and science: Some lessons from Solomon Asch. Personality and Social Psychology Review, 5, 214.
Google Scholar[80] | SAGE Journals | ISI[81][82]

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688701.
Google Scholar[83] | Crossref | ISI[84][85]

Schafer, J. L., Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147177.
Google Scholar[86] | Crossref | Medline | ISI[87][88][89]

Silver, N. (2012). The signal and the noise: The art and science of prediction. New York, NY: Penguin Press.
Google Scholar[90]

Sjölander, A. (2009). Propensity scores and M-structures. Statistics in Medicine, 28, 14161420.
Google Scholar[91] | Crossref | Medline | ISI[92][93][94]

Smith, G. C., Pell, J. P. (2003). Parachute use to prevent death and major trauma related to gravitational challenge: Systematic review of randomised controlled trials. British Medical Journal, 327, Article 1459. doi:10.1136/bmj.327.7429.1459
Google Scholar[96] | Crossref[97]

[95] Spector, P. E., Brannick, M. T. (2011). Methodological urban legends: The misuse of statistical control variables. Organizational Research Methods, 14, 287305.
Google Scholar[98] | SAGE Journals | ISI[99][100]

Spirtes, P., Glymour, C. N., Scheines, R. (2000). Causation, prediction, and search. Cambridge, MA: MIT Press.
Google Scholar[101]

Steegen, S., Tuerlinckx, F., Gelman, A., Vanpaemel, W. (2016). Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11, 702712.
Google Scholar[102] | SAGE Journals | ISI[103][104]

Thoemmes, F. (2015). Reversing arrows in mediation models does not distinguish plausible models. Basic and Applied Social Psychology, 37, 226234.
Google Scholar[105] | Crossref | ISI[106][107]

Thoemmes, F., Mohan, K. (2015). Graphical representation of missing data problems. Structural Equation Modeling: A Multidisciplinary Journal, 22, 631642.
Google Scholar[108] | Crossref[109]

Tiefenbach, T., Kohlbacher, F. (2015). Individual differences in the relationship between domain satisfaction and happiness: The moderating role of domain importance. Personality and Individual Differences, 86, 8287.
Google Scholar[110] | Crossref[111]

Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current Directions in Psychological Science, 9, 160164.
Google Scholar[112] | SAGE Journals | ISI[113][114]

Turkheimer, E., Harden, K. P. (2014). Behavior genetic research methods: Testing quasi-causal hypotheses using multivariate twin data. In Reis, H. T., Judd, C. M. (Eds.), Handbook of research methods in social and personality psychology (pp. 159187). New York, NY: Cambridge University Press.
Google Scholar[115]

Voelkle, M. C., Oud, J. H., Davidov, E., Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17, 176192.
Google Scholar[116] | Crossref | Medline | ISI[117][118][119]

Westfall, J., Yarkoni, T. (2016). Statistically controlling for confounding constructs is harder than you think. PLOS ONE, 11(3), Article e0152719. doi:10.1371/journal.pone.0152719
Google Scholar[121] | Crossref | Medline[122][123][120]

References

  1. ^ Google Scholar (scholar.google.com)
  2. ^ SAGE Journals (journals.sagepub.com)
  3. ^ ISI (journals.sagepub.com)
  4. ^ Google Scholar (scholar.google.com)
  5. ^ Crossref (journals.sagepub.com)
  6. ^ ISI (journals.sagepub.com)
  7. ^ Google Scholar (scholar.google.com)
  8. ^ Google Scholar (scholar.google.com)
  9. ^ Crossref (journals.sagepub.com)
  10. ^ Medline (journals.sagepub.com)
  11. ^ ISI (journals.sagepub.com)
  12. ^ Google Scholar (scholar.google.com)
  13. ^ Crossref (journals.sagepub.com)
  14. ^ Medline (journals.sagepub.com)
  15. ^ ISI (journals.sagepub.com)
  16. ^ Google Scholar (scholar.google.com)
  17. ^ Google Scholar (scholar.google.com)
  18. ^ Crossref (journals.sagepub.com)
  19. ^ Medline (journals.sagepub.com)
  20. ^ ISI (journals.sagepub.com)
  21. ^ Google Scholar (scholar.google.com)
  22. ^ Crossref (journals.sagepub.com)
  23. ^ Google Scholar (scholar.google.com)
  24. ^ Google Scholar (scholar.google.com)
  25. ^ Crossref (journals.sagepub.com)
  26. ^ Google Scholar (scholar.google.com)
  27. ^ Crossref (journals.sagepub.com)
  28. ^ Medline (journals.sagepub.com)
  29. ^ ISI (journals.sagepub.com)
  30. ^ Google Scholar (scholar.google.com)
  31. ^ Crossref (journals.sagepub.com)
  32. ^ Google Scholar (scholar.google.com)
  33. ^ Crossref (journals.sagepub.com)
  34. ^ Google Scholar (scholar.google.com)
  35. ^ Crossref (journals.sagepub.com)
  36. ^ Medline (journals.sagepub.com)
  37. ^ ISI (journals.sagepub.com)
  38. ^ Google Scholar (scholar.google.com)
  39. ^ Crossref (journals.sagepub.com)
  40. ^ Medline (journals.sagepub.com)
  41. ^ ISI (journals.sagepub.com)
  42. ^ Google Scholar (scholar.google.com)
  43. ^ Crossref (journals.sagepub.com)
  44. ^ ISI (journals.sagepub.com)
  45. ^ Google Scholar (scholar.google.com)
  46. ^ Crossref (journals.sagepub.com)
  47. ^ ISI (journals.sagepub.com)
  48. ^ Google Scholar (scholar.google.com)
  49. ^ SAGE Journals (journals.sagepub.com)
  50. ^ ISI (journals.sagepub.com)
  51. ^ https://gking.harvard.edu/publications/why-propensity-scores-should-not-be-used-formatching (gking.harvard.edu)
  52. ^ Google Scholar (scholar.google.com)
  53. ^ Google Scholar (scholar.google.com)
  54. ^ SAGE Journals (journals.sagepub.com)
  55. ^ ISI (journals.sagepub.com)
  56. ^ Google Scholar (scholar.google.com)
  57. ^ Google Scholar (scholar.google.com)
  58. ^ Google Scholar (scholar.google.com)
  59. ^ 10.1101/079707 (doi.org)
  60. ^ Google Scholar (scholar.google.com)
  61. ^ Crossref (journals.sagepub.com)
  62. ^ Google Scholar (scholar.google.com)
  63. ^ Crossref (journals.sagepub.com)
  64. ^ Google Scholar (scholar.google.com)
  65. ^ Crossref (journals.sagepub.com)
  66. ^ ISI (journals.sagepub.com)
  67. ^ Google Scholar (scholar.google.com)
  68. ^ Google Scholar (scholar.google.com)
  69. ^ Crossref (journals.sagepub.com)
  70. ^ Medline (journals.sagepub.com)
  71. ^ ISI (journals.sagepub.com)
  72. ^ Google Scholar (scholar.google.com)
  73. ^ http://www.the100.ci/2017/03/14/that-one-weird-third-variable-problem-nobody-ever-mentions-conditioning-on-a-collider/ (www.the100.ci)
  74. ^ Google Scholar (scholar.google.com)
  75. ^ http://www.the100.ci/2017/04/21/whats-an-age-effect-net-of-all-time-varying-covariates/ (www.the100.ci)
  76. ^ Google Scholar (scholar.google.com)
  77. ^ Google Scholar (scholar.google.com)
  78. ^ Crossref (journals.sagepub.com)
  79. ^ ISI (journals.sagepub.com)
  80. ^ Google Scholar (scholar.google.com)
  81. ^ SAGE Journals (journals.sagepub.com)
  82. ^ ISI (journals.sagepub.com)
  83. ^ Google Scholar (scholar.google.com)
  84. ^ Crossref (journals.sagepub.com)
  85. ^ ISI (journals.sagepub.com)
  86. ^ Google Scholar (scholar.google.com)
  87. ^ Crossref (journals.sagepub.com)
  88. ^ Medline (journals.sagepub.com)
  89. ^ ISI (journals.sagepub.com)
  90. ^ Google Scholar (scholar.google.com)
  91. ^ Google Scholar (scholar.google.com)
  92. ^ Crossref (journals.sagepub.com)
  93. ^ Medline (journals.sagepub.com)
  94. ^ ISI (journals.sagepub.com)
  95. ^ 10.1136/bmj.327.7429.1459 (doi.org)
  96. ^ Google Scholar (scholar.google.com)
  97. ^ Crossref (journals.sagepub.com)
  98. ^ Google Scholar (scholar.google.com)
  99. ^ SAGE Journals (journals.sagepub.com)
  100. ^ ISI (journals.sagepub.com)
  101. ^ Google Scholar (scholar.google.com)
  102. ^ Google Scholar (scholar.google.com)
  103. ^ SAGE Journals (journals.sagepub.com)
  104. ^ ISI (journals.sagepub.com)
  105. ^ Google Scholar (scholar.google.com)
  106. ^ Crossref (journals.sagepub.com)
  107. ^ ISI (journals.sagepub.com)
  108. ^ Google Scholar (scholar.google.com)
  109. ^ Crossref (journals.sagepub.com)
  110. ^ Google Scholar (scholar.google.com)
  111. ^ Crossref (journals.sagepub.com)
  112. ^ Google Scholar (scholar.google.com)
  113. ^ SAGE Journals (journals.sagepub.com)
  114. ^ ISI (journals.sagepub.com)
  115. ^ Google Scholar (scholar.google.com)
  116. ^ Google Scholar (scholar.google.com)
  117. ^ Crossref (journals.sagepub.com)
  118. ^ Medline (journals.sagepub.com)
  119. ^ ISI (journals.sagepub.com)
  120. ^ 10.1371/journal.pone.0152719 (doi.org)
  121. ^ Google Scholar (scholar.google.com)
  122. ^ Crossref (journals.sagepub.com)
  123. ^ Medline (journals.sagepub.com)

Source URL: Read More
The public content above was dynamically discovered – by graded relevancy to this site’s keyword domain name. Such discovery was by systematic attempts to filter for “Creative Commons“ re-use licensing and/or by Press Release distributions. “Source URL” states the content’s owner and/or publisher. When possible, this site references the content above to generate its value-add, the dynamic sentimental analysis below, which allows us to research global sentiments across a multitude of topics related to this site’s specific keyword domain name. Additionally, when possible, this site references the content above to provide on-demand (multilingual) translations and/or to power its “Read Article to Me” feature, which reads the content aloud to visitors. Where applicable, this site also auto-generates a “References” section, which appends the content above by listing all mentioned links. Views expressed in the content above are solely those of the author(s). We do not endorse, offer to sell, promote, recommend, or, otherwise, make any statement about the content above. We reference the content above for your “reading” entertainment purposes only. Review “DMCA & Terms”, at the bottom of this site, for terms of your access and use as well as for applicable DMCA take-down request.

1 2

Share