Correlation vs Causation: Definition, Differences, & Examples

As mobile marketers, we make decisions every day based on data[1]. These decisions lead users to keep using our apps or uninstall them. Which is why we have to think clearly when facing data and watch out when seeing possible correlation vs causation issues.

There’s been a steady move in the past decade for organizations to favor data-driven decisions. It’s the thinking that, without evidence, there’s no real basis for a decision. This makes it even more critical to use statistics as a tool that gives insight into the relationships between factors in a given analysis. Statistics helps you differentiate the correlations from the causations.

Correlation vs Causation Example

My mother-in-law recently complained to me: “Whenever I try to text message, my phone freezes.” A quick look at her smartphone confirmed my suspicion: she had five game apps open at the same time plus Facebook and YouTube. The act of trying to send a text message wasn’t causing the freeze, the lack of RAM was. But she immediately connected it with the last action she was doing before the freeze.

She was implying a causation where there was only a correlation.

correlation vs causation - when your phone starts freezing

Correlation and Causation Examples in Mobile Marketing

Correlations are everywhere. As conspiracy theory debunkers like to say: “If you look long enough, you’ll see patterns.”

In the same way, if you look long enough, you may begin to see cause-and-effect relationships in your mobile marketing[2] data where there is only correlation. We try to find a reason why A and B occur at the same time.

See if you can spot which is which in these correlation and causation examples below:

  • New web design implemented >> Web page traffic increased
    Was the traffic increase because of the new design (causality)? Or was traffic simply up organically at the time when the new design was released (correlation)?
  • Uploaded new app store images >> Downloads increased by 2X
    Did downloads increase because of the new images in your app stores? Or did they just happen to occur at the same time?
  • Push notification sent every Friday >> Uninstalls increase every Friday
    Are people uninstalling your app because of your weekly push notifications? Or is some other factor at play?
  • Increase in links to your website >> Higher ranking in search engine results
    Does the increase in links directly cause the better search ranking? Or are they merely correlated?

To better understand correlation vs causation, let’s begin by defining terms.

The Art of Onboarding Mobile App Users

Make a great first impression for lasting customer relationships. Understand how to onboard users for your app using CleverTap.

Download Whitepaper[3]

What is Correlation?

Correlation is a term in statistics that refers to the degree of association between two random variables. So the correlation between two data sets is the amount to which they resemble one another.

If A and B tend to be observed at the same time, you’re pointing out a correlation between A and B. You’re not implying A causes B or vice versa. You’re simply saying when A is observed, B is observed. They move together or show up at the same time.

There are three types of correlations that we can identify:

  • Positive correlation is when you observe A increasing and B increases as well. Or if A decreases, B correspondingly decreases. Example: the more purchases made in your app, the more time is spent using your app.
  • Negative correlation is when an increase in A leads to a decrease in B or vice versa.
  • No correlation is when two variables are completely unrelated and a change in A leads to no changes in B, or vice versa.

Just remember: correlation doesn’t imply causation. It can sometimes be a coincidence. And if you don’t believe me, there is a humorous website full of such coincidences called Spurious Correlations.1 Here’s an example:

Spurious correlation

What is Causation?

Causation is implying that A and B have a cause-and-effect relationship with one another. You’re saying A causes B.

Causation is also known as causality.

  • Firstly, causation means that two events appear at the same time or one after the other.
  • And secondly, it means these two variables not only appear together, the existence of one causes the other to manifest.

Correlation vs. Causation: Why The Difference Matters

Knowing the difference between correlation and causation can make a huge difference – especially when you’re basing a decision on something that may be erroneous.

Say, you’re wondering whether the last month’s increase in monthly active users[4] has been caused by the recent App Store optimization[5] efforts, it makes sense to test this in order to say for sure whether it’s a correlation or a causation.

Correlation vs Causation: How to Tell if Something’s a Coincidence or a Causality

So how do you test your data so you can make bulletproof claims about causation? There are five ways to go about this – technically they are called design of experiments.**[6] We list them from the most robust method to the weakest:

1. Randomized and Experimental Study

Say you want to test the new shopping cart in your ecommerce app. Your hypothesis is that there are too many steps before a user can actually check out and pay for their item, and that this difficulty is the friction point that blocks them from buying more often. So you’ve rebuilt the shopping cart in your app and want to see if this will increase the chances of users buying stuff.

correlation vs causation - shopping cart abandonment

The best way to prove causation is to set up a randomized experiment. This is where you randomly assign people to test the experimental group.

In experimental design, there is a control group[7] and an experimental group, both with identical conditions but with one independent variable being tested. By assigning people randomly to test the experimental group, you avoid experimental bias, where certain outcomes are favored over others.

In our example, you would randomly assign users to test the new shopping cart you’ve prototyped in your app, while the control group would be assigned to use the current (old) shopping cart.

After the testing period, look at the data and see if the new cart leads to more purchases. If it does, you can claim a true causal relationship: your old cart was hindering users from making a purchase. The results will have the most validity to both internal stakeholders and other people outside your organization whom you choose to share it with, precisely because of the randomization.

1 2